Wireless Body Sensor for Objective Assessment of Surgical Performance on a Standardised FLS Task

Regular price $0.00 Sale

9th International Conference on Body Area Networks
Georgina Kirby1, Richard Kwasnicki2, Caroline Hargrove3, Jonathan Rees4, Mikael Sodergren2, Guang-Zhong Yang2, Benny Lo2
1: Imperial College London & McLaren Applied Technologies
2: Imperial College London
3: McLaren Applied Technologies
4: University of Oxford

    Advances in Body Sensor Networks have prompted increasing numbers of low cost, miniaturised sensors being used in many applications with one being the capture of hand movement data for surgical skills assessment. Despite these advances, existing assessments are still predominantly subjective and resource demanding. Combining surgical training with a reliable objective assessment technique would ensure that trainees are correctly evaluated and credentialed as they progress through their training hence, ensuring competence and reducing critical medical errors. This paper proposes the use of wearable, wireless inertial sensors for capturing motion data and enabling objective assessment of trainee surgeons' performance in carrying out one of the FLS (Fundamentals of Laparoscopic surgery) tasks; the peg transfer. A novel approach has been developed for segmenting specific peg movements enabling performance to be measured entirely objectively. The features derived from the whole task and from segmented peg movements were analysed through unsupervised machine learning algorithms to look for useful measures of performance as well as patterns to identify differences between expert and trainee performance. Encouraging results in the peg transfer task, where a successful classification of expertise was obtained for participants against gold standard assessment, prompt further investigation into the development of advanced performance metrics for a wider range of surgical tasks.